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Abstract

The article concerns the problem of bonded contact of a thin, flexible elliptical disk with a transversely
isotropic half-space. Three different cases of loading have been considered: (a) the disk is loaded by a
transverse force, whose line of action passes through the center of the disk and lies in the plane of the disk;
(b) the disk is subjected to a rotation by a torque, whose axis is perpendicular to the surface of the half-
space; (c¢) the half-space with the bonded disk is under uniform stress field at infinity. The problem
corresponding to all three cases is reduced, in a unified manner, to a set of coupled two-dimensional integral
equations. Closed-form solutions for these equations have been obtained by using Galin’s theorem. © 1999
Elsevier Science Ltd. All rights reserved.

1. Introduction

While the contact problems of elastic stress distribution in isotropic materials have been inves-
tigated at great detail, relatively less work has been done on similar problems in anisotropic
materials. This is primarily because of the greater difficulty of this type of problems involving
more than two elastic constants. However, in the case of a transversely isotropic material whose
constitutive behavior may be described by five independent elastic constants, solutions of a large
number of problems can be found. Elliot (1948, 1949) seems to have first initiated work in this
direction. In particular, Elliot (1949) investigated the axisymmetric problem of a transversely
isotropic half-space indented by a rigid punch. Subsequently, Shield (1951) adapted Elliot’s
approach (Elliot, 1984) to solve a number of more difficult crack and punch problems for a
transversely isotropic material, such as the problems of elliptical punch and crack. Sveklo (1964)
employed the Smirnov—Sobolev technique to derive Boussinesq type solutions for a generally
anisotropic half-space, in particular, a transversely isotropic half-space and used them to solve a
number of axisymmetric and non-axisymmetric indentation problems for a transversely isotropic
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solid (Sveklo, 1970). Willis (1966) extended Galin’s theorem to solve the problem of Hertzian
contact between two anisotropic solids. Conway et al. (1967a) were concerned with the problem
of finding the location of maximum shearing stresses under a rigid sphere indenting a transversely
isotropic half-space. These authors found that they would occur at a depth of 0.5a in contrast to
the isotropic case (which is 0.47a), where a is the radius of the contact region. Later, Conway and
Farnham (1967b) investigated the same issue for the case where the sphere is subjected to a
transverse force. Dahan and Zarka (1977) investigated the axisymmetric problem of contact
between a rigid sphere and a transversely isotropic half-space with resort to a Hankel-transform
approach and presented extensive numerical results as to how the contact stress distributions are
influenced by transverse isotropy. This problem was also considered by Guidera et al. (1978) and
Pouyet and Lataillaze (1979). Borodachev (1990) used a variational approach to solve the problem
of indentation of a transversely isotropic half-space by a rigid punch with a nearly circular base.
Recently, Fabrikant (1997) obtained exact solution for the problem of contact interaction between
circular punch and a transversely isotropic solid when tangential displacements are prescribed
within the contact area and the rest of the surface is free. Readers interested in excellent reviews
of the work in this area as well as in other mathematically similar areas of mixed boundary value
problems of the elasticity theory are referred to the books by Galin (1976), Gladwell (1980) and
Ting (1996).

The present article is concerned with the problem of contact between a tension-resistant, thin
absolutely flexible disk of elliptical planform and a transversely isotropic half-space. Complete
bonding is assumed to exist between them. Three different cases of loading have been considered:
(a) the disk is loaded by a transverse force whose line of action passes through the center of the
disk and lies in its plane; (b) the disk is twisted by a torque whose axis is perpendicular to the
surface of the half-space; (c) the half-space with the bonded disk under uniform stress field at
infinity in a plane parallel to the plane of the disk. By means of double Fourier transform, the
problem for all three cases has been reduced, in a unified manner, to a set of coupled two-
dimensional integral equations, exact solution of which has been derived by using Galin’s theorem.
The correctness of the solution has been checked against the solution of the corresponding problem
for an isotropic half-space. To the best of our knowledge, the present solution is new.

The present article may be regarded as a sequel to the work by Alexandrov and Solov’ev (1966),
who investigated the isotropic version of the problem. Also, the present problem is mathematically
equivalent to that involving two transversely isotropic bodies already in Hertzian contact, in which
an additional system of forces is applied to the bodies such that across the contact surface, one
body exerts on the other a small additional transverse load and a couple. Viewed from this point,
it is worth mentioning that the isotropic version of the problem investigated herein corresponding
to the cases (a) and (b) were also addressed by Mindlin (1949) and Lure (1964) using a different
approach.

We begin by introducing the notation which we shall make use of.

We define the two-dimensional Fourier transform of a function, f(x, y) by the equation (Sneddon,
1972):

> | R , :
floy, o) = QJTJ J S (x,y) exp (ixo; +iyo,) dxdy

— o0 — o0
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and write f (o, ) = Z[{f(x,¥); X > o;},y = a,]. The inversion theorem for the Fourier operator
F states that if fis the Fourier transform of £, then

S B .
f(x,y) = 27IJ‘ J‘ S (o, 00) exp (—ixoy —iyo, ) dogy doty

— o0 — o0
which we write as

f(x,y) = *g:[{f(alaoh);al —>x},oc2 -]

The basic results that we need are as follows:

of (xy, x5, .
?[{W;Xl—’al}§xz—’az}=_ia;‘f(ala“zaz)a Jj=12,

J

g; af(x“xz’Z);xl—)OCI R :af((xlaa29z),
0z 0z

where x; = x and x, = y.
We write convolution theorem in the form

ﬁ_l[{f(alsaz)g(“n“z);al = Xf;0, =] =(f29)(x,),
where (f°g) is defined by

o0

1
(f°9)(x,y) =27J

— o0

f " fe—Ey—n)g(E ) dedn.

2. Basic equations and potential solutions for transversely isotropic bodies

We consider a transversely isotropic solid occupying the half-space (|x| < oo, |y| < 00,z = 0),
with the assumption that the axis of symmetry for the material is the z-axis. We denote the
displacement vector at the point (x, y, z) by @ with the components (u, v, w) and the stress tensor
by ¢ with the components s,,, 7,,, 0., 0,., 0., 0,,. Then, the equilibrium of the solid is governed
by the following equations:

00, N do, ~Jo. 0

0x oy oz

do,, 0o, 00,

0x + Oy + 0z =0,

a Xz a yz a zz

Tue Tz T, M)

The stress—strain relationships for a transversely isotropic material are given by the following
equations (Green and Zerna, 1968):
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ou ov ow

0,\—,\—:0116 +C126y+513ga
ou ov ow
(g 6126 +ci 5 dy +cCi13 = 9z’
<6u ) ow
0., = ~o T A C33 4 >
X 0z
ov
0, = &4—7
e (242
ax = 52
ou ow
Oy = (011 C12) (0 0x> @)

Elliot (1948) (see also Green and Zerna, 1968) showed that the equations of equilibrium (1) for a
transversely isotropic, elastic solid can be expressed in terms of three potential functions, ¥,
(x = 1,2,3), which obey the following Laplace-type equations:

62
<V2+S >Xc< =0, 3)
0z2
where
5 82 62
Vi =5t
ox- 0Oy
2
sy = 4)
Ci1 —Ci2

and s,, s, are two distinct roots of the equation
11448 +{C13(2cas+c13) — 1133+ Ca3048 = 0. Q)
In terms of y,, the components of displacements and stresses are given by the relations:

0 0
7(%1 +%2)+ %

0
(Xl +%2)— X3

6 0
A+k2£’
0z

2 2

0% o
0.. = (kicyz—s1¢13) — 5 +(kacs3—55013) 22 5
0z’ 0z
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11 n s
Oyz = Cas {(H_kl)ayaz +(1+ko) dy 0z N ﬁxaz}’
0* Py 07
0.y = Cyq4 {(1+kl)ax aZ +(1+k2) ax aZ + ay az}a (6)
where
a:C113_044:(C13+C44)Sa' 7

C13+Cay €33 —C44S

The remaining stress components are not cited in eqns (6), because we shall not need them in the
subsequent analysis. The roots of eqn (5) may be either real (with the same sign) or complex
conjugates. When s,, s, are negative or complex conjugates, we choose si/%, 53/ to be complex

conjugates with positive real parts.

3. Statement of the problem

Consider a transversely isotropic half-space reinforced by an elliptical disk. The disk is assumed
to be inextensible and have no flexural stiffness at all. Complete bonding is assumed to exist
between the half-space and the disk. Three different cases of loading of the disk have been
considered: (a) The disk is subjected to the shearing force 7T, directed at an angle « to the major
axis of the ellipse; (b) the disk is rotated at angle by a moment M, whose axis is perpendicular to
the surface of the half-space (Fig. 1); (c) at infinity, the solid is subjected to tensile stress p in a

v

Fig. 1. A flexible elliptical disk bonded with the surface of a transversely isotropic half-space.
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plane parallel to the plane of the disk, directed at angle y to the major axis of the ellipse. Let in the
process of deformation of the system, the disk be rotated in its plane at an angle ¢ and its center
be displaced at a distance 6 along a line whose direction makes an angle § to the major axis of the
ellipse. Thus, the problem consists in determining the contact stresses under the disk and also the
relationships among the quantities 7, M, p, o, y and ¢, J, f. We introduce the Cartesian coordinate
system X, y, z such that the region occupied by the half-space is given by the inequalities (— o0 < X,
y < o0, 0 <z < o0), and the contact region Q between the disk and the elastic half-space by the
inequality 1 —x?/a>—?/b* > 0 (a > b). We denote the compliment to the region Q by Q. Within
the framework of linear elasticity, we can split the problem into three smaller problems cor-
responding to the above three cases of loading. The boundary conditions for these problems are
as follows:

Problem 1:
0.(x,0,00=0 (x,»)eQJqd
0. (4,7,0) = 0,.(x,7,0) = 0, (x,7) e,
u(x,y,0) =ocosf, (x,y)eQ,
v(x,y,0) =9dsinf, (x,y)eQ. (®)
Problem 2:
0..(x%, 3,00 =0, (x,»)eQJq,
0.:(%,2,0) = 0,.(x,5,0) = 0, (x,») €,
u(x,y,0) = —y, (x,y)eQ,
v(x,3,0) = ox, (x,y)€Q. ®
Problem 3:
0..(x. .00 =0, (x,»)eQJQ,
0:(%,7,0) = 0,.(x,5,0) =0, (x,y)€Q,
u(x,y,0) = —y, (x,y)€Q,
v(x,9,0) = ox, (x,y)el. (10)

At infinity, we have

g, =pcos’y, o, =psin’y, o, =] psin2y. (11)

All other stress components vanish at infinity.

Within the framework of linear elasticity, the solution of Problem 3 can be obtained by super-
posing the solution of an unperturbed problem and a corrective solution. The unperturbed problem
consists in finding the elastic field in the half-space without the disk under the boundary conditions
(11), while the corrective problem consists in determining the elastic field in the medium in the
presence of the disk subjected to the following boundary conditions:
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0..(x,3,0) =0, (x,»)eQJQ,
M(X,y,0)= —(py—uo(x,y,O), (X,y)EQ,

v(x,,0) = opx—1°(x,7,0), (x,»)eQ,
GXZ(XTy’ O) = O-"7Z(x7y’ 0) = 0’ (x’y)€ﬁ7 (12)

where #°(x, y,0) and °(x, y, 0) are the solution of the unperturbed problem, the solution of which
is given in Appendix A.

4. The solution
A suitable solution of the eqn (3) satisfying the regularity conditions is given by
%X, 3, 2) = F 7 1A, (00, ) exp(—ion X — o,y —m,z); oy — X} 05 = ), (13)
where A4, (x = 1, 2, 3) are some unknown constants to be determined using the boundary conditions

of the problem and m, = [(o} +a3)/s,]'>.
Corresponding to (14), we have the following relations:

u(x,y,z) = F '[{—in, A, exp(—m,z) — i, A, exp(—m,z) —io, Ay
exp(—msz); o — X} 0 = V],
v(x,y,2) = F '[{—ioy A, exp(—m,z) —io, A, exp(—m,z) +io A;
exp(—msz);0y — X} 0, = ),
0..(x,y,2) = F "[{(k c35—s,¢,3)mi A, exp(—m, z)
+ (kyc33 —55013)m3 Ay exp(—myz2); 00 = 2} 0, > V],
0-(x,p,2) =F {icas(1+k\)o, Aym, exp(—m, z)
+icys(1+ky)ay Aymy exp(—myz) +icyq0, Asms exp(—msz); o, = X0, =y,
0,.(x,y,2) = F " '[{icas(1+ k) )oam, A, exp(—m, z) +icys (1 +ks)
UMy Ay €XP(—myz) —icaq0 Asmis exp(—msz); o — X} 00 — V. (14)

Now using the stress boundary conditions of the problem [see eqns (8)—(10)] and the eqns (14),
it can be shown that

u(X Vs 0) ][{—C44 AO' (OCl,O(Z’O)(OCI +O(2)]/2 0441 (s1/2 A) %
OC2(OC1 +a%)7(3/2)o-x2(al > 0o, 0)+C;41 (S3/2 _A)OCIOCZ(OC% +O(%)7(3/2)O~'y:(0(| , 0, 0),

oy = x}io, >y,
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v(x,»,0) =7 ! [{ —Ca NG, (o, 0, 0) (o +03) M2 —cgy (sy2—A)

o (“% + 0‘%)7(3/2)5}7(“1 ,00,0) + cid (5;/2 — Aoy, (O‘% + OC%)7(3/2)0~'xz(0‘1 ,00,0);

oy _’x};az -yl (15)
where
_ 1-T
TP A +k) =5y V(1 +ko)T
k _
r _Sz( 1633 —51€13)

= . 16
s1(kycy3—82013) (1o

Using convolution theorem for Fourier transform, we obtain

. 0) = — 5 r J a1 _Ar J e ey

2neqs | ) 2ncyy ) ) ., R?
- SZ/M_A Jl Ji ‘”ff;’”(x— E(y—n)dédy,
w0 = — 5 J: Fw 2 gy % JZ J: Py ded
—Syz_Ar r 7=CNeyy—nydedn, (17)
2ncqs ) ) ., R?

where R = {(x—&)*+ (y—n)*}'""~.
Equations (17) give the surface displacements of a transversely isotropic half-space loaded on
the surface by the shear stresses ¢, (x,y,0) and o,.(x, y,0).

In deriving eqns (18), use has been made of the following integrals (Erdelyi, 1954):

F e +03) 20y = X} 0, = )] =%,
F {1 /(7 +93) P50y > X} - y] = ;}:3’
F o/ +a3) 20y = xfson = y] = ;i
F e/ +ad) o > xim 0] =

Now invoking the displacement boundary conditions of the problem [see eqns (8)—(10)], we obtain

the following integral equations to determine the contact stresses o..(x, y,0) and ¢,.(x, y,0) under
the disk:
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I (=9 (x=r—n)
JJ[R +KT 0..(&n)dédn+x T%:(@’?) d&dn
Q Q

=n(ay+a,x+ay), (x,y)eQ,
1 —n)? _ _
jf[+K(ny)}¢W@nndédn+xJJ“7‘29””0H@nndédn

R

Q

sy2P—A
=n(bo+b x+byy), (x,)€Q, k= A (18)

where the constants ¢; and b, (i = 0, 1, 2) are given by
Problem 1:

2044 dcos ﬁ . 2(/'44 Jsin ﬂ

A s 0= A , ay=b,=a,=0,=0, (19)

Clo=

Problem 2:

2C44Q —2C44Q
L b= ag=ai=by=b, =0, (20)

a, =
Problem 3:
ao == bo = O,

2¢44p(A; cOs® y— A, sin® p)
Cll == — A N

20440 2c44pA;5sin2y
A A ’

a;

b 20440  2c44pAssin2y
1 — A A b}

b, = — 2c44p(A SinzAV_Az cos’y) ' (21

Following Alexandrov and Solov’ev (1966), we introduce the notations

. ¢, . (x—=8*¢n (1 éz . ”ﬁ 1z
%—”Mmﬁw%%—”med@mMM—@ be,

(y—m)&n J J (x=O(y—nién
B,‘/' == 7(1 5 d 5 C” == d d . 22
| gwmm = | TE .

It can be verified by direct computation that the following relations hold:
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Aij = (W 1;/); _X(I/I/(/),/w
By= W ;1) —y(Wy)5,
Cyj= W1 ), —x(Wy)e =(Wi ) —y (W) (23)

where the primes denote differentiation with respect to the coordinate shown in the subscripts. It
is obvious from eqns (23) that we need to evaluate the integral W; only. All other integrals, viz.

A, B;;, C;, can be evaluated using the relations (23). The evaluation of the integral W;; has been

discussed at greater length in the book (Vorovich et al., 1974). The readers are referred to Appendix
B where a synopsis of these results has been given.

To solve the integral eqns (18), we use Galin’s theorem (Galin, 1976; Gladwell, 1980) (see also
Appendix C) and represent the unknown contact pressures in the form:

O-xz(xayao) = l_l(an’)(Co +C1X+C2y),
0,:(%,3,0) = 17" (x, y)(dy +d\ x + ). (24)

Putting (24) into (18), we obtain the following algebraic equations to determine the unknown
coefficients ¢;, d;:

(Woo+KAgo)co+(Wio+KAo)er +(Woi +rAg1)cr +1Cood

+xCod, +kCy,d, = n(ay+a,x+a,y),

(Woo+KBoo)dy +(Wyo+xByo)d, + (W, +KkByy)d, +kCocy

+xCioc; +kCoicy = m(by+bix+Dyy). (25)

It can be shown by using the equations (23) and the closed-form expression for the integral W,
(see Appendix B) that the following relations hold:

Woo+KAdgy = tbPyy, Wig+Kdyy = nbxPyy, Wy +KkAdy = nbyPy,,
Woo+KByy = 1bQoy, Wio+KBy = nbxQo, Wy +KkBy = nbyQy,,
Coo = O, ClO == nbyR, CO] = beS, (26)

where

Poy =~ [(& +K)K(O) — KE@)],
e
2
Qoo = [(€% +re* —K)K(e) + kE(e)],
e
P, = % [e* —k(e* +2)K(e) — 2Kk +e*) E(e)],
e

Py, = 34 [—Qr+e*)(1—e®)K(e) + (e* —xe? +2x) E(e)],
e
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2 2 2 2 2
010 = — [(e* +2Ke* —2Kk)K(e) — (¢* +xe* —2K) E(e)],
e

0u1 = [(€ 410~ 2)(1 —e)K(O)+ (¢ + 26" — 20 E(@)]
e

2 ) 2(1—e?) )
R=— g[(Z—e‘)K(e)—ZE(e)], S=- T[@—@ )K(e) —2E(e)],
where e is the eccentricity of the ellipse and K(e), E(e) are the complete elliptical integrals of the
first and second kinds, respectively.

In passing, we note that for a circular domain (i.e. ¢ = 0), eqns (27) reduce to

T T
Poy = Qoo :§(2+K)9 Py = Qo :§(4+K)5

T v
P01=Q10=§(4+3K), R=S= 3 (28)
Equations (28) can be derived by letting e — 0 in (27) and using L’Hopital’s rule in conjunction
with the rule for differentiation of the complete elliptical integrals of the first and second kinds.

Substituting the relations (27) into (25) and equating the terms of the left and right hand sides
with like powers of x and y yields a system of linear algebraic equations, solving which we get the
following expressions for the unknown coefficients c;, d;:

o = ay - a, Qo —byxS = a,Q1o—b kR
’ bPOO’ l b(P10Q01_K2RS)’ ’ b(Pleo_KzRS),
d, by b, Py, —a,kS ] b, Py —a, kR (29)

= , d = 5 = .
bQyo 1 b(Py; Q1o —K’RS) b(P,Qy; —K*RS)
We now proceed to the detailed consideration of all three problems.

Problem 1: For this case, the constants a,, b; are given by (19). Then using eqns (24) and (29), we
obtain the following expressions for the contact stresses:

—2¢440C08 —2¢44 08I0 f

0.(x,7,0) = , 0,.(x,9,0) = . 30
D = Rty D T Rb0y ) (0
The components of the shearing force T along the x- and y-axes are (see Appendix B):
B ey, oancos f§
T‘( - J\Jax:(xa ya O) dx dy - APOO s
Q
_46445an Slnﬁ
T,=||o,.(x,y,0)dxdt = —————— 31
= [t ulis 61
Q

Therefore, the resultant transverse force is



1976 M. Rahman/International Journal of Solids and Structures 36 (1999) 1965-1983

4c, .S 2 s 2 oN\1/2
T=(T3+TH" =0 <C(;>Sz : Sl;zﬁ> ‘ (32)
00 0
The slope of the force T relative to the x-axis is
T, P
tan o z?}:Q—OOtanﬁ. (33)
x 00

Next, consider some special cases of this problem.

Case A: Let o = 0, that is, the line of action of the transverse force coincides with the x-axis. Then
T'=T,p=0,T, =0.Therefore, the equations for the contact stresses (30) reduce to the following:

—2¢44 0a _Acyy darn

— 0,.(x,y,00=0, T=——. 34
APyl(x,y) ( ».0) APy, 34)

0..(x,»,0) =

Case B: Let o = ©/2, which means that the line of action of the transverse force is along the y-axis.
Then T'=T,, p =(n/2), T, = 0. Therefore, the contact stresses are given by

—2044 oa 4C44 oar
— 0.(x,,00)=0, T=———.
AQqol(x,y) (x::0) AQy

Case C: Consider the case of a circular disk, i.e. «a =5 (e =0). Then o =  and we have the
following equations

ayz(xaya 0) = (35)

0.:(%,0,0)  0,.(5,0,0)  —2c40 —2C440
cosfp sinf AbQol(x,y)  m*QQ+K)bAl(x,y)
. 4cy,0am (cos® B N sin? B\!/? _ dcy da . (36)
A P32, 0%, T2+ K)A

In deriving equations (36), use has been made of the relations (28).
We now proceed to consider the second problem.

Problem 2: In this case, the constants a;, b; are given by (20), which upon substituting into equations
(24) and (29) yields the following equations for determining the contact stresses:

2¢440(Q10+KR)y
bA(Py; Q1o —K>RS)I(x, y) ’

—2¢440(Po) +KS)x
bA(Py Q19— K> RS)I(x,y) .

The moment M and the angle of rotation ¢ are related by the equation

GXZ(’XB y’ O) =

7,:(x,,0) = (37)
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M = Jj[xo-y:(xa Vs 0) —yax:(x, Vs 0)] dx dy

Q

B —4c a0m
a 3A(Py; Qi _KZRS)

[(Py; +xS)a” + (0, +KkR)b?]. (38)

With regard to the evaluation of the integral (38), the readers are referred to Appendix D.
The solution corresponding to the case of a circular disk can be obtained by letting ¢ — 0 in
eqns (37) and (38) and using the results (28), viz

dcyur P2\~ 1?
G()_,(I’) = {Gi:(xays 0)+J)Zfz(xays O)}l/z = m <1 - Clz) 9

—16¢440a’
M=—F———"—"—. 39
3A(14x) (39)
Problem 3: For this problem, the constants a;, b, are given by eqns (21). Substituting into eqns (24)
and (29), we obtain the following equations to determine the contact stresses:

2px .
0.(x,»,0) = — AD(P,,O 2 RS) [O0:1 (A cos? y— A, sin’ y)
10201 —
—xS(A, sin? y— A, cos? )]~ (x, y) + 2
’ Ab(Pleo_KzRS)
X [(caap—Aspsin2y) Qo +K(casp+Aspsin 2y) Rl (x, p),
2x )
0,-(x,»,0) = _Ab(P 0 > RS) [Po1(caap+Aspsin2y)
01 10 —
2
+1S(caap—Aspsin 291 (x. ) — P
Ab(P1,Q0, _KzRS)
X [P1o(A sin> y—A, cos? y) —xkR(A, cos® o — A, sin® )]/~ (x, ). (40)

We find the angle of rotation ¢ of the disk from the condition that the surface is free of load, i.e.
T.=T,=0,M =0.
The second condition M = 0 gives the required relationship between p, « and ¢, namely,
_ — A5 sin 2)[(Py; —S)a* — (Q10 — R)D’]
(Po1 +8)a® +(Q10 +KR)b? .

(41)

Equations (40) and (41) complete the solution of Problem 3.

Next we consider some special cases of this problem. The case where y = 0 corresponds to the
action of tensile stresses p on the elastic half-space in a direction parallel to the x-axis. Accordingly,
for this case ¢ = 0 and the equations for the contact stresses (40) reduce to
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—2px(A1 Qo1 + A5 S)
Ab(Py Q19— K> RS)I(x,y) ’
—2py(Ay Py + A R)
Ab(P1,Q¢; —K*RS)I(x, )
The case where y = 7/2 corresponds to the action of tensile stresses on the elastic half-space in a

direction parallel to the y-axis. Also, in this case we have ¢ = 0 and the contact stresses are given
by the equations

G,YZ (x7 y’ O) =

0,.(x,,0) = (42)

2px(A, 001 +A,5)
Ab(Py; Q19— K> RS)I(x, ) ’

—2py(A Py + A, R)
Ab(P1,Q¢; —K*>RS)I(x, )
Finally, let us consider the case of a circular disk as a limiting case of the solution (40). In this

case, it follows that ¢ = 0 and the equations determining the contact stresses assume the following
form:

ay\‘Z ('x7 y’ 0) =

0,.(x,,0) = (43)

—2px .
0.-(X,2,0) = a2+ %) [{A1(4+K) = Ayx} cos® y+ {Ay (4+K) — A,k sin’ 7]
r2 —1/2 8pyA3 r2 —1/2
=) s oy (1
X( a2> nah2+1) " V( aZ) ’
_ —Zpy ) 2
0,:(x,»,0) = m[{/\l(4+’<)—/\z’<} sin® y 4+ {A, (44x) — A, k] cos 7]
P2\~ 172 8pxA, . P2\~ 172
T I = TS 0 R H 44
X ( az) 7'5611\(2-1—16) Sin V( az) ( )

In deriving eqns (44), use has been made of the relations (28).

5. The special case of isotropy

For an isotropic material, we have (Green and Zerna, 1968)

2(1—=v)u 2vu
Ciy 2033:1_72‘)a 0122013:1_72‘)> Csqg = W, (45)

where p and v are the shear modulus and Poisson’s ratio. With (45), we get, using eqns (4), (5)
and (A.3),
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S1232:S3:1,

\ 1 1

A=, A=, Ay=—, Aj=—~. 4
P21 4y)T T T 2(1+y)T T T4 T T 2(1+y) (46)

If we next put s, = s, = 53 = 1 into the equations for I' and A [eqn (16)] and x [eqn (18)], we see
that they reduce to indeterminacies. In order to overcome this difficulty, we assume that s, , = 1+,
where ¢ is a small positive quantity. With this, we have the following expressions

v

ki, =142ig(1—v), T =1+2ie(1-v), A=1-v, x= (47)

1—v’
Putting (46) and (47) into eqns (30)—(44) and passing to the limit ¢ —» 0, we find the solution
corresponding to the isotropic case (which we do not list here for the sake of saving space) and
observe that they are precisely the same as those obtained by Alexandrov and Solov’ev (1966)
except a minor sign error in their equation (38).

6. Closure

In the present paper, we have considered the contact problem of a flexible elliptical disk bonded
to the surface of a transversely isotropic half-space under three different cases of loading, namely,
(a) the disk is loaded by a transverse load in its plane; (b) the disk is subjected to a rotation by a
concentrated moment; (d) the disk-half-space system is under uniform stress field at infinity acting
in a plane parallel to that of the disk. The problem corresponding to all three cases has been
reduced, in a unified manner, to a set of coupled two-dimensional integral equations, the exact
solution of which have been found by using Galin’s theorem. To the best of the author’s knowledge,
the present solution is new. The correctness of the solution has been verified by comparing them
to those known for the isotropic case. Of further interest is the analogous problem under arbitrary
polynomial loading, for which the present approach based on Galin’s theorem is most suitable.
Another issue of considerable interest is the corresponding problem involving buried loads in the
transversely isotropic half-space, in which case the right hand sides of the integral equations will
no longer be polynomial. But, we note that since any continuous function in a bounded region
(which in our case is elliptical) can be approximated up to any accuracy by polynomials of x and
y (Bernstein’s theorem), Galin’s theorem can still be applied to solve the problem. Research in this
direction will be reported elsewhere.

Appendix A

The objective of this Appendix is to derive the solution for the unperturbed problem cor-
responding to the third case of loading.
The solution of the problem is sought in the form:

u(x,y,z) =px+ty+rz
0(X,,2) = pyX+1y+71,z
W(X,¥,2) = p3X+1;y+1;3z (A1)
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where p, t, r; (i=1,2,3) are some constants. We note that in view of the linearity of these
expressions, the equilibrium eqns (1) are automatically satisfied. Next, invoking the boundary
conditions (11) and the stress-free conditions on the surface of the half-space, viz,
0..(x,,0) = 0,.(x,»,0) = 7,.(x,»,0) = 0, we obtain the following solution:

u(x,y,z) = ci' p(A, cos’ y—A, sin® p)x+ci4' pAs sin2y y,

v(x,,2) = cad pAsxsin2y+ i)' p(A, sin? y— A, cos? )y,

w(x,,2) = —cad pAsz, (A2)
where

caa(CriCay —0%3)

= b
(¢ —Clz)(CnCss+Clzc33—2c%3)

1

caq(CiaCa3 —5%3)

(cr1—€12)(C11C33+C1aC33 —2¢73)

2

)

Cyq
ANy=——"—,
’ 2(011_612)
Ay = ot (A3)
C11C33+C1015 — 2075
Appendix B

In this Appendix, we give a synopsis of the results concerning the evaluation of the integral W,
namely,

éf;/]f ( &2 ’12>1/2
Wi/'= > 12 1—72—72 déd s B1
‘ JJ{(x—é) +(y—m?}" a@ b 1 (BI)

Q

where Q is the elliptical domain (1 —x?/a*—y?/b*)"* < 0. Evaluation of this integral has been
discussed at great length by Vorovich et al. (1976), so without going into details, we give the final
results below:

X X Kcospcos Mcosp\ Ksinpcos MsingY do
W” - JO d(p J\O <x+ Ll”,‘z L y+ Ll”,rz - L Ll/2 ) (Bz)

where the following notations are introduced:

cos? sin? X cos sin X
L) =240 M) =0 ROy (B3)
a b a

b? a b
Integrating with respect to 0 and changing the variable ¢ = ¢’ + n/2, after some algebraic manipu-
lations, we reduce equation to the final form:
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3 Z C((]r+x)/2(_ 1)(r7s)/2a2q+1
q=0

r+s+1 1 r—s+2j+1 (18)/2
—5 )(1 —)

i+j—2q

i+j—2q—p.,p i o itp—s
X ClijagX =Pyl S,-,ﬁw;w, (B4)
p—0

where r+s and j+p are even, Ck = n!/{k!(n—k)!}, B(x, y) is the Beta function, and

n cos>” ¢ sin*"
Sy = J PP __de. (BS)

0 (1 _eZ Sinz q))m+n+(l,/2)

Integrals S, , for Ym, n = 0 can be expressed in terms of the complete elliptical integrals of the first
and second kinds by means of the recurrence relations derived by Mayrhoffer and Fischer (1994).

Appendix C

Consider the integral equation

[ [P,y =, )

where R = [(x—x,)?+ (y—1,)*]"* and Q is an elliptical region. Galin’s theorem states that if the
function f{(x, y) can be represented as

S = ¥ Y gy, )

m=0n=0

then the solution of the integral equation has the following form

2 2 P4

p(x.y) = (1—x Y ) TS by, (C3)

2 12
a b m=0n=0

where ¢ and b are the major and minor semi-axes of the ellipse. We now proceed to show that
although the integral eqns (18) are not in the form of (C1), nonetheless the same results hold for
them too. Indeed, consider the following integral equation

J j ”(’“I‘;;y”(x—xo)z drvy dyy = 7f(x,7). (C4)

Equation (C4) can be written as

d [[p(xo,¥0) J Xop(Xo, o) .
_xﬁx JJ R dxo dy, + ox R dxo dyy = 7f(x, ). (C5)
o (0
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Now, it is obvious that the results (C2) and (C3) do also hold for eqn (C4). In a similar fashion,
it can be shown the same results also hold for the integral equations

ij(xl(;y())(y_)’o)z dx, dy, = nf(x, ), ()
Jp(xl(:}y())(x_xo)(y_)%) dxo dy, = nf(x, y), “

thus proving that results of the type (C2) and (C3) hold also for the integral eqns (18).

Appendix D

In deriving eqns (31) and (38), use has been made of the integral

x* A\ 2 Cm—DNQ2n—1!
2m,2n _ _ — 2m+1p2n+1
ij ¥ <1 E: b2> dxdy = 2na b Qmt2n+ (DD
where it is assumed that (—1)!! = 1. Derivation of the integral (D1) can be found in many books

on contact mechanics, e.g. Galin (1976), Gladwell (1980).
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