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Abstract

The article concerns the problem of bonded contact of a thin\ ~exible elliptical disk with a transversely
isotropic half!space[ Three di}erent cases of loading have been considered] "a# the disk is loaded by a
transverse force\ whose line of action passes through the center of the disk and lies in the plane of the disk^
"b# the disk is subjected to a rotation by a torque\ whose axis is perpendicular to the surface of the half!
space^ "c# the half!space with the bonded disk is under uniform stress _eld at in_nity[ The problem
corresponding to all three cases is reduced\ in a uni_ed manner\ to a set of coupled two!dimensional integral
equations[ Closed!form solutions for these equations have been obtained by using Galin|s theorem[ Þ 0888
Elsevier Science Ltd[ All rights reserved[

0[ Introduction

While the contact problems of elastic stress distribution in isotropic materials have been inves!
tigated at great detail\ relatively less work has been done on similar problems in anisotropic
materials[ This is primarily because of the greater di.culty of this type of problems involving
more than two elastic constants[ However\ in the case of a transversely isotropic material whose
constitutive behavior may be described by _ve independent elastic constants\ solutions of a large
number of problems can be found[ Elliot "0837\ 0838# seems to have _rst initiated work in this
direction[ In particular\ Elliot "0838# investigated the axisymmetric problem of a transversely
isotropic half!space indented by a rigid punch[ Subsequently\ Shield "0840# adapted Elliot|s
approach "Elliot\ 0873# to solve a number of more di.cult crack and punch problems for a
transversely isotropic material\ such as the problems of elliptical punch and crack[ Sveklo "0853#
employed the SmirnovÐSobolev technique to derive Boussinesq type solutions for a generally
anisotropic half!space\ in particular\ a transversely isotropic half!space and used them to solve a
number of axisymmetric and non!axisymmetric indentation problems for a transversely isotropic
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solid "Sveklo\ 0869#[ Willis "0855# extended Galin|s theorem to solve the problem of Hertzian
contact between two anisotropic solids[ Conway et al[ "0856a# were concerned with the problem
of _nding the location of maximum shearing stresses under a rigid sphere indenting a transversely
isotropic half!space[ These authors found that they would occur at a depth of 9[4a in contrast to
the isotropic case "which is 9[36a#\ where a is the radius of the contact region[ Later\ Conway and
Farnham "0856b# investigated the same issue for the case where the sphere is subjected to a
transverse force[ Dahan and Zarka "0866# investigated the axisymmetric problem of contact
between a rigid sphere and a transversely isotropic half!space with resort to a Hankel!transform
approach and presented extensive numerical results as to how the contact stress distributions are
in~uenced by transverse isotropy[ This problem was also considered by Guidera et al[ "0867# and
Pouyet and Lataillaze "0868#[ Borodachev "0889# used a variational approach to solve the problem
of indentation of a transversely isotropic half!space by a rigid punch with a nearly circular base[
Recently\ Fabrikant "0886# obtained exact solution for the problem of contact interaction between
circular punch and a transversely isotropic solid when tangential displacements are prescribed
within the contact area and the rest of the surface is free[ Readers interested in excellent reviews
of the work in this area as well as in other mathematically similar areas of mixed boundary value
problems of the elasticity theory are referred to the books by Galin "0865#\ Gladwell "0879# and
Ting "0885#[

The present article is concerned with the problem of contact between a tension!resistant\ thin
absolutely ~exible disk of elliptical planform and a transversely isotropic half!space[ Complete
bonding is assumed to exist between them[ Three di}erent cases of loading have been considered]
"a# the disk is loaded by a transverse force whose line of action passes through the center of the
disk and lies in its plane^ "b# the disk is twisted by a torque whose axis is perpendicular to the
surface of the half!space^ "c# the half!space with the bonded disk under uniform stress _eld at
in_nity in a plane parallel to the plane of the disk[ By means of double Fourier transform\ the
problem for all three cases has been reduced\ in a uni_ed manner\ to a set of coupled two!
dimensional integral equations\ exact solution of which has been derived by using Galin|s theorem[
The correctness of the solution has been checked against the solution of the corresponding problem
for an isotropic half!space[ To the best of our knowledge\ the present solution is new[

The present article may be regarded as a sequel to the work by Alexandrov and Solov|ev "0855#\
who investigated the isotropic version of the problem[ Also\ the present problem is mathematically
equivalent to that involving two transversely isotropic bodies already in Hertzian contact\ in which
an additional system of forces is applied to the bodies such that across the contact surface\ one
body exerts on the other a small additional transverse load and a couple[ Viewed from this point\
it is worth mentioning that the isotropic version of the problem investigated herein corresponding
to the cases "a# and "b# were also addressed by Mindlin "0838# and Lure "0853# using a di}erent
approach[

We begin by introducing the notation which we shall make use of[
We de_ne the two!dimensional Fourier transform of a function\ f"x\ y# by the equation "Sneddon\

0861#]

f½ "a0\ a1# �
0
1p g

�

−� g
�

−�

f "x\ y# exp "ixa0¦iya1# dx dy
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and write f½ "a0\ a1# � Fð"f "x\ y#^ x : a0#\ y : a1Ł[ The inversion theorem for the Fourier operator
F states that if f½ is the Fourier transform of f\ then

f "x\ y# �
0
1p g

�

−� g
�

−�

f½ "a0\ a1# exp "−ixa0−iya1# da0 da1

which we write as

f "x\ y# � Fð"f½ "a0\ a1#^ a0 : x#\ a1 : yŁ[

The basic results that we need are as follows]

F $6
1f "x0\ x1\ z#

1xj

^ x0 : a07 ^ x1 : a1%� −iajf½ "a0\ a1\ z#\ j � 0\ 1\

F $6
1f "x0\ x1\ z#

1z
^ x0 : a07 ^ x1 : a%�

1f½"a0\ a1\ z#
1z

\

where x0 � x and x1 � y[
We write convolution theorem in the form

F−0 ð"f½ "a0\ a1# ½̀ "a0\ a1#^ a0 : x#^ a1 : yŁ �" f > `#"x\ y#\

where " f > `# is de_ned by

" f > `#"x\ y# �
0
1p g

�

−� g
�

−�

f "x−j\ y−h#`"j\ h# dj dh[

1[ Basic equations and potential solutions for transversely isotropic bodies

We consider a transversely isotropic solid occupying the half!space "=x= ³ �\ =y= ³ �\ z − 9#\
with the assumption that the axis of symmetry for the material is the z!axis[ We denote the
displacement vector at the point "x\ y\ z# by u¼ with the components "u\ v\ w# and the stress tensor
by s¼ with the components sxx\ syy\ szz\ syz\ szx\ sxy[ Then\ the equilibrium of the solid is governed
by the following equations]

1sxx

1x
¦

1sxy

1y
¦

1sxz

1z
� 9\

1sxy

1x
¦

1syy

1y
¦

1syz

1z
� 9\

1sxz

1x
¦

1syz

1y
¦

1szz

1z
� 9\ "0#

The stressÐstrain relationships for a transversely isotropic material are given by the following
equations "Green and Zerna\ 0857#]
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sxx � c00

1u
1x

¦c01

1v
1y

¦c02

1w
1z

\

syy � c01

1u
1x

¦c00

1v
1y

¦c02

1w
1z

\

szz � c02 0
1u
1x

¦
1v
1y1¦c22

1w
1z

\

syz � c33 0
1v
1z

¦
1w
1y1\

szx � c33 0
1u
1z

¦
1w
1x1\

sxy �
0
1
"c00−c01# 0

1u
1z

¦
1w
1x1[ "1#

Elliot "0837# "see also Green and Zerna\ 0857# showed that the equations of equilibrium "0# for a
transversely isotropic\ elastic solid can be expressed in terms of three potential functions\ xa

"a � 0\ 1\ 2#\ which obey the following Laplace!type equations]

091
0¦sa

11

1z11 xa � 9\ "2#

where

91
0 �

11

1x1
¦

11

1y1
\

s2 �
1c33

c00−c01

\ "3#

and s0\ s1 are two distinct roots of the equation

c00c33s
1¦"c02"1c33¦c02#−c00c22#s¦c22c33 � 9[ "4#

In terms of xa\ the components of displacements and stresses are given by the relations]

u �
1

1x
"x0¦x1#¦

1x2

1y
\

v �
1

1y
"x0¦x1#−

1x2

1x
\

w � k0

1x0

1z
¦k1

1x1

1z
\

szz � "k0c22−s0c02#
11x0

1z1
¦"k1c22−s1c02#

11x1

1z1
\
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syz � c33 6"0¦k0#
11x0

1y 1z
¦"0¦k1#

11x1

1y 1z
−

11x2

1x 1z7\

szx � c33 6"0¦k0#
11x0

1x 1z
¦"0¦k1#

11x1

1x 1z
¦

11x2

1y 1z7\ "5#

where

ka �
c00s−c33

c02¦c33

�
"c02¦c33#sa

c22−c33s
[ "6#

The remaining stress components are not cited in eqns "5#\ because we shall not need them in the
subsequent analysis[ The roots of eqn "4# may be either real "with the same sign# or complex
conjugates[ When s0\ s1 are negative or complex conjugates\ we choose s0:1

0 \ s0:1
1 to be complex

conjugates with positive real parts[

2[ Statement of the problem

Consider a transversely isotropic half!space reinforced by an elliptical disk[ The disk is assumed
to be inextensible and have no ~exural sti}ness at all[ Complete bonding is assumed to exist
between the half!space and the disk[ Three di}erent cases of loading of the disk have been
considered] "a# The disk is subjected to the shearing force T\ directed at an angle a to the major
axis of the ellipse^ "b# the disk is rotated at angle by a moment M\ whose axis is perpendicular to
the surface of the half!space "Fig[ 0#^ "c# at in_nity\ the solid is subjected to tensile stress p in a

Fig[ 0[ A ~exible elliptical disk bonded with the surface of a transversely isotropic half!space[
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plane parallel to the plane of the disk\ directed at angle g to the major axis of the ellipse[ Let in the
process of deformation of the system\ the disk be rotated in its plane at an angle 8 and its center
be displaced at a distance d along a line whose direction makes an angle b to the major axis of the
ellipse[ Thus\ the problem consists in determining the contact stresses under the disk and also the
relationships among the quantities T\ M\ p\ a\ g and 8\ d\ b[ We introduce the Cartesian coordinate
system x\ y\ z such that the region occupied by the half!space is given by the inequalities "−� ³ x\
y ³ �\ 9 ¾ z ³ �#\ and the contact region V between the disk and the elastic half!space by the
inequality 0−x1:a1−y1:b1 − 9 "a − b#[ We denote the compliment to the region V by V	[ Within
the framework of linear elasticity\ we can split the problem into three smaller problems cor!
responding to the above three cases of loading[ The boundary conditions for these problems are
as follows]

Problem 0]

szz"x\ y\ 9# � 9 "x\ y# $ V k V	\

sxz"x\ y\ 9# � syz"x\ y\ 9# � 9\ "x\ y# $ V	\

u"x\ y\ 9# � d cos b\ "x\ y# $ V\

v"x\ y\ 9# � d sin b\ "x\ y# $ V[ "7#

Problem 1]

szz"x\ y\ 9# � 9\ "x\ y# $ V k V	\

sxz"x\ y\ 9# � syz"x\ y\ 9# � 9\ "x\ y# $ V	\

u"x\ y\ 9# � −8y\ "x\ y# $ V\

v"x\ y\ 9# � 8x\ "x\ y# $ V[ "8#

Problem 2]

szz"x\ y\ 9# � 9\ "x\ y# $ V k V	\

sxz"x\ y\ 9# � syz"x\ y\ 9# � 9\ "x\ y# $ V	\

u"x\ y\ 9# � −8y\ "x\ y# $ V\

v"x\ y\ 9# � 8x\ "x\ y# $ V[ "09#

At in_nity\ we have

sxx � p cos1 g\ syy � p sin1 g\ sxy � 0
1
p sin 1g[ "00#

All other stress components vanish at in_nity[
Within the framework of linear elasticity\ the solution of Problem 2 can be obtained by super!

posing the solution of an unperturbed problem and a corrective solution[ The unperturbed problem
consists in _nding the elastic _eld in the half!space without the disk under the boundary conditions
"00#\ while the corrective problem consists in determining the elastic _eld in the medium in the
presence of the disk subjected to the following boundary conditions]
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szz"x\ y\ 9# � 9\ "x\ y# $ V k V	\

u"x\ y\ 9# � −8y−u9"x\ y\ 9#\ "x\ y# $ V\

v"x\ y\ 9# � 8x−v9"x\ y\ 9#\ "x\ y# $ V\

sxz"x\ y\ 9# � syz"x\ y\ 9# � 9\ "x\ y# $ V	\ "01#

where u9"x\ y\ 9# and v9"x\ y\ 9# are the solution of the unperturbed problem\ the solution of which
is given in Appendix A[

3[ The solution

A suitable solution of the eqn "2# satisfying the regularity conditions is given by

xa"x\ y\ z# � F−0 ð"Aa"a0\ a1# exp"−ia0x−ia1y−maz#^ a0 : x#^ a1 : yŁ\ "02#

where Aa "a � 0\ 1\ 2# are some unknown constants to be determined using the boundary conditions
of the problem and ma � ð"a1

0¦a1
1#:saŁ0:1[

Corresponding to "03#\ we have the following relations]

u"x\ y\ z# � F−0 ð"−ia0A0 exp"−m0z#−ia1A1 exp"−m1z#−ia1A2

exp"−m2z#^ a0 : x#^ a1 : yŁ\

v"x\ y\ z# � F−0 ð"−ia1A0 exp"−m0z#−ia1A1 exp"−m1z#¦ia0A2

exp"−m2z#^ a0 : x#^ a1 : yŁ\

szz"x\ y\ z# � F−0 ð""k0c22−s0c02#m1
0A0 exp"−m0z#

¦"k1c22−s1c02#m1
1A1 exp"−m1z#^ a0 : z#^ a1 : yŁ\

sxz"x\ y\ z# � F−0 ð"ic33"0¦k0#a0A0m0 exp"−m0z#

¦ic33"0¦k1#a0A1m1 exp"−m1z#¦ic33a1A2m2 exp"−m2z#^ a0 : x#^ a1 : yŁ\

syz"x\ y\ z# � F−0 ð"ic33"0¦k0#a1m0A0 exp"−m0z#¦ic33"0¦k1#

a1m1A1 exp"−m1z#−ic33a0A2m2 exp"−m2z#^ a0 : x#^ a1 : yŁ[ "03#

Now using the stress boundary conditions of the problem ðsee eqns "7#Ð"09#Ł and the eqns "03#\
it can be shown that

u"x\ y\ 9# � F−0 ð"−c−0
33 Ls½ xz"a0\ a1\ 9#"a1

0¦a1
1#0:1−c−0

33 "s0:1
2 −L#×

a1
1"a1

0¦a1
1#−"2:1#s½ xz"a0\ a1\ 9#¦c−0

33 "s0:1
2 −L#a0a1"a1

0¦a1
1#−"2:1#s½ yz"a0\ a1\ 9#^

a0 : x#^ a1 : yŁ\
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v"x\ y\ 9# � F−0 ð"−c−0
33 Ls½ yz"a0\ a1\ 9#"a1

0¦a1
1#−"0:1#−c−0

33 "s0:1
2 −L#

a1
1"a1

0¦a1
1#−"2:1#s½ yz"a0\ a1\ 9#¦c−0

33 "s0:1
2 −L#a0a1"a1

0¦a1
1#−"2:1#s½ xz"a0\ a1\ 9#^

a0 : x#^ a1 : yŁ\ "04#

where

L �
0−G

s−"0:1#
0 "0¦k0#−s−"0:1#

1 "0¦k1#G
\

G �
s1"k0c22−s0c02#
s0"k1c22−s1c02#

[ "05#

Using convolution theorem for Fourier transform\ we obtain

u"x\ y\ 9# � −
L

1pc33 g
�

−� g
�

−�

sxz"j\ h#
R

dj dh−
s0:1
2 −L
1pc33 g

�

−� g
�

−�

sxz"j\ h#

R2
"x−j#1 dj dh

−
s0:1
2 −L
1pc33 g

�

−� g
�

−�

syz"j\ h#

R2
"x−j#"y−h# dj dh\

v"x\ y\ 9# � −
L

1pc33 g
�

−� g
�

−�

syz"j\ h#
R

dj dh−
s0:1
2 −L
1pc33 g

�

−� g
�

−�

sxz"j\ h#

R2
"y−h#1 dj dh

−
s0:1
2 −L
1pc33 g

�

−� g
�

−�

sxz"j\ h#

R2
"x−j#"y−h# dj dh\ "06#

where R � ""x−j#1¦"y−h#1#0:1[
Equations "06# give the surface displacements of a transversely isotropic half!space loaded on

the surface by the shear stresses sxx"x\ y\ 9# and syz"x\ y\ 9#[
In deriving eqns "07#\ use has been made of the following integrals "Erdelyi\ 0843#]

F−0 ð""a1
0¦a1

1#0:1^ a0 : x#^ a1 : yŁ �
0
R

\

F−0 ð"a1
0:"a1

0¦a1
1#0:1^ a0 : x#^ a1 : yŁ �

y1

R2
\

F−0 ð"a1
1:"a1

0¦a1
1#0:1^ a0 : x#^ a1 : yŁ �

x1

R2
\

F−0 ð"a0a1:"a1
0¦a1

1#0:1^ a0 : x#^ a1 : yŁ �
−xy

R2
[

Now invoking the displacement boundary conditions of the problem ðsee eqns "7#Ð"09#Ł\ we obtain
the following integral equations to determine the contact stresses sxz"x\ y\ 9# and syz"x\ y\ 9# under
the disk]
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gg
V
$
0
R

¦k
"x−j#1

R2 % sxz"j\ h# dj dh¦k gg
V

"x−j#"y−h#

R2
syz"j\ h# dj dh

� p"a9¦a0x¦a1y#\ "x\ y# $ V\

gg
V
$
0
R

¦k
"y−h#1

R2 % syz"j\ h# dj dh¦k gg
V

"x−j#"y−h#

R2
sxz"j\ h# dj dh

� p"b9¦b0x¦b1y#\ "x\ y# $ V\ k �
s0:1
2 −L

L
"07#

where the constants ai and bi "i � 9\ 0\ 1# are given by

Problem 0]

a9 � −
1c33 d cos b

L
\ b9 � −

1c33 d sin b

L
\ a0 � b0 � a1 � b1 � 9\ "08#

Problem 1]

a1 �
1c338

L
\ b0 �

−1c338

L
\ a9 � a0 � b9 � b1 � 9\ "19#

Problem 2]

a9 � b9 � 9\

a0 � −
1c33p"L0 cos1 g−L1 sin1 g#

L
\

a1 �
1c338

L
−

1c33pL2 sin 1g

L
\

b0 � −
1c338

L
−

1c33pL2 sin 1g

L
\

b1 � −
1c33p"L0 sin1 g−L1 cos1 g#

L
[ "10#

Following Alexandrov and Solov|ev "0855#\ we introduce the notations

Wij � gg
V

jihj

Rl"j\ h#
dj dh\ Aij � gg

V

"x−j#1jihj

R2l"j\ h#
dj dh\ l"j\ h# � 00 −

j1

a1
−

h1

b11
0:1

\

Bij � gg
V

"y−h#1jihj

R2l"j\ h#
dj\ dh\ Cij � gg

V

"x−j#"y−h#jihj

R2l"j\ h#
dj dh[ "11#

It can be veri_ed by direct computation that the following relations hold]
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Aij � "Wi¦0\j#?x−x"Wij#?x\

Bij � "Wi\ j¦0#?y−y"Wij#?y\

Cij � "Wi¦0\j#?y−x"Wij#?x �"Wi\ j¦0#?x−y"Wij#?x[ "12#

where the primes denote di}erentiation with respect to the coordinate shown in the subscripts[ It
is obvious from eqns "12# that we need to evaluate the integral Wij only[ All other integrals\ viz[
Aij\ Bij\ Cij\ can be evaluated using the relations "12#[ The evaluation of the integral Wij has been
discussed at greater length in the book "Vorovich et al[\ 0863#[ The readers are referred to Appendix
B where a synopsis of these results has been given[

To solve the integral eqns "07#\ we use Galin|s theorem "Galin\ 0865^ Gladwell\ 0879# "see also
Appendix C# and represent the unknown contact pressures in the form]

sxz"x\ y\ 9# � l−0"x\ y#"c9¦c0x¦c1y#\

syz"x\ y\ 9# � l−0"x\ y#"d9¦d0x¦d1y#[ "13#

Putting "13# into "07#\ we obtain the following algebraic equations to determine the unknown
coe.cients ci\ di]

"W99¦kA99#c9¦"W09¦kA09#c0¦"W90¦kA90#c1¦kC99d9

¦kC90d0¦kC90d1 � p"a9¦a0x¦a1y#\

"W99¦kB99#d9¦"W09¦kB09#d0¦"W90¦kB90#d1¦kC99c9

¦kC09c0¦kC90c1 � p"b9¦b0x¦b1y#[ "14#

It can be shown by using the equations "12# and the closed!form expression for the integral Wij

"see Appendix B# that the following relations hold]

W99¦kA99 � pbP99\ W09¦kA09 � pbxP09\ W90¦kA90 � pbyP90\

W99¦kB99 � pbQ99\ W09¦kB09 � pbxQ09\ W90¦kB90 � pbyQ90\

C99 � 9\ C09 � pbyR\ C90 � pbxS\ "15#

where

P99 �
1

e1
ð"e1¦k#K"e#−kE"e#Ł\

Q99 �
1

e1
ð"e1¦ke1−k#K"e#¦kE"e#Ł\

P09 �
1

e3
ðe1−k"e1¦1#K"e#−"1k¦e1#E"e#Ł\

P90 �
1

e3
ð−"1k¦e1#"0−e1#K"e#¦"e1−ke1¦1k#E"e#Ł\
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Q09 �
1

e3
ð"e1¦1ke1−1k#K"e#−"e1¦ke1−1k#E"e#Ł\

Q90 �
1

e3
ð−"e1¦ke1−1k#"0−e1#K"e#¦"e1¦1ke1−1k#E"e#Ł\

R � −
1

e3
ð"1−e1#K"e#−1E"e#Ł\ S � −

1"0−e1#

e3
ð"1−e1#K"e#−1E"e#Ł\

where e is the eccentricity of the ellipse and K"e#\ E"e# are the complete elliptical integrals of the
_rst and second kinds\ respectively[

In passing\ we note that for a circular domain "i[e[ e � 9#\ eqns "16# reduce to

P99 � Q99 �
p

1
"1¦k#\ P09 � Q90 �

p

7
"3¦k#\

P90 � Q09 �
p

7
"3¦2k#\ R � S � −

p

7
[ "17#

Equations "17# can be derived by letting e : 9 in "16# and using L|Hopital|s rule in conjunction
with the rule for di}erentiation of the complete elliptical integrals of the _rst and second kinds[

Substituting the relations "16# into "14# and equating the terms of the left and right hand sides
with like powers of x and y yields a system of linear algebraic equations\ solving which we get the
following expressions for the unknown coe.cients ci\ di]

c9 �
a9

bP99

\ c0 �
a0Q90−b1kS

b"P09Q90−k1RS#
\ c1 �

a1Q09−b0kR

b"P90Q09−k1RS#
\

d9 �
b9

bQ99

\ d0 �
b0P90−a1kS

b"P90Q09−k1RS#
\ d1 �

b1P09−a0kR

b"P09Q90−k1RS#
[ "18#

We now proceed to the detailed consideration of all three problems[

Problem 0] For this case\ the constants ai\ bi are given by "08#[ Then using eqns "13# and "18#\ we
obtain the following expressions for the contact stresses]

sxz"x\ y\ 9# �
−1c33 d cos b

LbP99l"x\ y#
\ syz"x\ y\ 9# �

−1c33 d sin b

LbQ99l"x\ y#
[ "29#

The components of the shearing force T along the x! and y!axes are "see Appendix B#]

Tx � gg
V

sxz"x\ y\ 9# dx dy �
−3c33 dap cos b

LP99

\

Ty � gg
V

syz"x\ y\ 9# dx dt �
−3c33dap sin b

LQ99

[ "20#

Therefore\ the resultant transverse force is
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T �"T1
x¦T1

y #0:1 �
3c33dap

L 0
cos1 b

P1
99

¦
sin1 b

Q1
9 1

0:1

[ "21#

The slope of the force T relative to the x!axis is

tan a �
Ty

Tx

�
P99

Q99

tan b[ "22#

Next\ consider some special cases of this problem[

Case A] Let a � 9\ that is\ the line of action of the transverse force coincides with the x!axis[ Then
T � Tx\ b � 9\ Ty � 9[ Therefore\ the equations for the contact stresses "29# reduce to the following]

sxz"x\ y\ 9# �
−1c33 da

LP99l"x\ y#
\ syz"x\ y\ 9# � 9\ T �

3c33 dap

LP99

[ "23#

Case B] Let a � p:1\ which means that the line of action of the transverse force is along the y!axis[
Then T � Ty\ b �"p:1#\ Tx � 9[ Therefore\ the contact stresses are given by

syz"x\ y\ 9# �
−1c33 da

LQ99l"x\ y#
\ sxz"x\ y\ 9# � 9\ T �

3c33 dap

LQ99

[ "24#

Case C] Consider the case of a circular disk\ i[e[ a � b "e � 9#[ Then a � b and we have the
following equations

sxz"x\ y\ 9#
cos b

�
syz"x\ y\ 9#

sin b
�

−1c33d

LbQ99l"x\ y#
�

−1c33d

p1"1¦k#bLl"x\ y#
\

T �
3c33dap

L 0
cos1 b

P1
99

¦
sin1 b

Q1
99 1

0:1

�
3c33da

p"1¦k#L
[ "25#

In deriving equations "25#\ use has been made of the relations "17#[

We now proceed to consider the second problem[

Problem 1] In this case\ the constants ai\ bi are given by "19#\ which upon substituting into equations
"13# and "18# yields the following equations for determining the contact stresses]

sxz"x\ y\ 9# �
1c338"Q09¦kR#y

bL"P90Q09−k1RS#l"x\ y#
\

syz"x\ y\ 9# �
−1c338"P90¦kS#x

bL"P90Q09−k1RS#l"x\ y#
[ "26#

The moment M and the angle of rotation 8 are related by the equation
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M � gg
V

ðxsyz"x\ y\ 9#−ysxz"x\ y\ 9#Ł dx dy

�
−3c33a8p

2L"P90Q09−k1RS#
ð"P90¦kS#a1¦"Q09¦kR#b1Ł[ "27#

With regard to the evaluation of the integral "27#\ the readers are referred to Appendix D[
The solution corresponding to the case of a circular disk can be obtained by letting e : 9 in

eqns "26# and "27# and using the results "17#\ viz

suz"r# � "s1
xz"x\ y\ 9#¦s1

yz"x\ y\ 9##0:1 �
3c338r

paL"0¦k# 00−
r1

a11
−0:1

\

M �
−05c338a2

2L"0¦k#
[ "28#

Problem 2] For this problem\ the constants ai\ bi are given by eqns "10#[ Substituting into eqns "13#
and "18#\ we obtain the following equations to determine the contact stresses]

sxz"x\ y\ 9# � −
1px

Lb"P09Q90−k1RS#
ðQ90"L0 cos1 g−L1 sin1 g#

−kS"L0 sin1 g−L1 cos1 g#Łl−0"x\ y#¦
1y

Lb"P90Q09−k1RS#

×ð"c338−L2p sin 1g#Q09¦k"c338¦L2p sin 1g#RŁl−0"x\ y#\

syz"x\ y\ 9# � −
1x

Lb"P90Q09−k1RS#
ðP90"c338¦L2p sin 1g#

¦kS"c338−L2p sin 1g#Łl−0"x\ y#−
1py

Lb"P09Q90−k1RS#

×ðP09"L0 sin1 g−L1 cos1 g#−kR"L0 cos1 8−L1 sin1 g#Łl−0"x\ y#[ "39#

We _nd the angle of rotation 8 of the disk from the condition that the surface is free of load\ i[e[
Tx � Ty � 9\ M � 9[

The second condition M � 9 gives the required relationship between p\ a and 8\ namely\

8 �
−L2 sin 1gð"P90−S#a1−"Q09−R#b1Ł

"P90¦kS#a1¦"Q09¦kR#b1
[ "30#

Equations "39# and "30# complete the solution of Problem 2[
Next we consider some special cases of this problem[ The case where g � 9 corresponds to the

action of tensile stresses p on the elastic half!space in a direction parallel to the x!axis[ Accordingly\
for this case 8 � 9 and the equations for the contact stresses "39# reduce to
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sxz"x\ y\ 9# �
−1px"L0Q90¦L1S#

Lb"P90Q09−k1RS#l"x\ y#
\

syz"x\ y\ 9# �
−1py"L1P09¦L0R#

Lb"P09Q90−k1RS#l"x\ y#
[ "31#

The case where g � p:1 corresponds to the action of tensile stresses on the elastic half!space in a
direction parallel to the y!axis[ Also\ in this case we have 8 � 9 and the contact stresses are given
by the equations

sxz"x\ y\ 9# �
1px"L1Q90¦L0S#

Lb"P90Q09−k1RS#l"x\ y#
\

syz"x\ y\ 9# �
−1py"L0P09¦L1R#

Lb"P09Q90−k1RS#l"x\ y#
[ "32#

Finally\ let us consider the case of a circular disk as a limiting case of the solution "39#[ In this
case\ it follows that 8 � 9 and the equations determining the contact stresses assume the following
form]

sxz"x\ y\ 9# �
−1px

paj"1¦k#
ð"L0"3¦k#−L1k# cos1 g¦"L1"3¦k#−L0k# sin1 gŁ

×00−
r1

a11
−0:1

−
7pyL2

paL"1¦k#
sin 1g 00−

r1

a11
−0:1

\

syz"x\ y\ 9# �
−1py

paL"1¦k#
ð"L0"3¦k#−L1k# sin1 g¦"L1"3¦k#−L0k# cos1 gŁ

×00−
r1

a11
−0:1

−
7pxL2

paL"1¦k#
sin 1g 00−

r1

a11
−0:1

[ "33#

In deriving eqns "33#\ use has been made of the relations "17#[

4[ The special case of isotropy

For an isotropic material\ we have "Green and Zerna\ 0857#

c00 � c22 �
1"0−n#m
0−1n

\ c01 � c02 �
1nm

0−1n
\ c33 � m\ "34#

where m and n are the shear modulus and Poisson|s ratio[ With "34#\ we get\ using eqns "3#\ "4#
and "A[2#\
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s0 � s1 � s2 � 0\

L0 �
0

1"0¦n#
\ L1 �

n

1"0¦n#
\ L2 �

0
3

\ L3 �
n

1"0¦n#
[ "35#

If we next put s0 � s1 � s2 � 0 into the equations for G and L ðeqn "05#Ł and k ðeqn "07#Ł\ we see
that they reduce to indeterminacies[ In order to overcome this di.culty\ we assume that s0\1 � 02io\
where o is a small positive quantity[ With this\ we have the following expressions

k0\1 � 021io"0−n#\ G � 0¦1io"0−n#\ L � 0−n\ k �
n

0−n
[ "36#

Putting "35# and "36# into eqns "29#Ð"33# and passing to the limit o : 9\ we _nd the solution
corresponding to the isotropic case "which we do not list here for the sake of saving space# and
observe that they are precisely the same as those obtained by Alexandrov and Solov|ev "0855#
except a minor sign error in their equation "27#[

5[ Closure

In the present paper\ we have considered the contact problem of a ~exible elliptical disk bonded
to the surface of a transversely isotropic half!space under three di}erent cases of loading\ namely\
"a# the disk is loaded by a transverse load in its plane^ "b# the disk is subjected to a rotation by a
concentrated moment^ "d# the disk!half!space system is under uniform stress _eld at in_nity acting
in a plane parallel to that of the disk[ The problem corresponding to all three cases has been
reduced\ in a uni_ed manner\ to a set of coupled two!dimensional integral equations\ the exact
solution of which have been found by using Galin|s theorem[ To the best of the author|s knowledge\
the present solution is new[ The correctness of the solution has been veri_ed by comparing them
to those known for the isotropic case[ Of further interest is the analogous problem under arbitrary
polynomial loading\ for which the present approach based on Galin|s theorem is most suitable[
Another issue of considerable interest is the corresponding problem involving buried loads in the
transversely isotropic half!space\ in which case the right hand sides of the integral equations will
no longer be polynomial[ But\ we note that since any continuous function in a bounded region
"which in our case is elliptical# can be approximated up to any accuracy by polynomials of x and
y "Bernstein|s theorem#\ Galin|s theorem can still be applied to solve the problem[ Research in this
direction will be reported elsewhere[

Appendix A

The objective of this Appendix is to derive the solution for the unperturbed problem cor!
responding to the third case of loading[

The solution of the problem is sought in the form]

u"x\ y\ z# � p0x¦t0y¦r0z

v"x\ y\ z# � p1x¦t1y¦r1z

w"x\ y\ z# � p2x¦t2y¦r2z "A0#



M[ Rahman:International Journal of Solids and Structures 25 "0888# 0854Ð08720879

where pi\ ti\ ri "i � 0\ 1\ 2# are some constants[ We note that in view of the linearity of these
expressions\ the equilibrium eqns "0# are automatically satis_ed[ Next\ invoking the boundary
conditions "00# and the stress!free conditions on the surface of the half!space\ viz\
szz"x\ y\ 9# � sxx"x\ y\ 9# � syz"x\ y\ 9# � 9\ we obtain the following solution]

u"x\ y\ z# � c−0
33 p"L0 cos1 g−L1 sin1 g#x¦c−0

33 pL2 sin 1g y\

v"x\ y\ z# � c−0
33 pL2x sin 1g¦c−0

33 p"L0 sin1 g−L1 cos1 g#g\

w"x\ y\ z# � −c−0
33 pL3z\ "A1#

where

L0 �
c33"c00c22−c1

02#

"c00−c01#"c00c22¦c01c22−1c1
02#

\

L1 �
c33"c01c22−c1

02#

"c00−c01#"c00c22¦c01c22−1c1
02#

\

L2 �
c33

1"c00−c01#
\

L3 �
c02c33

c00c22¦c01c02−1c1
02

[ "A2#

Appendix B

In this Appendix\ we give a synopsis of the results concerning the evaluation of the integral Wij\
namely\

Wij � gg
V

jihj

""x−j#1¦"y−h#1#0:1 00−
j1

a1
−

h1

b11
−0:1

dj dh\ "B0#

where V is the elliptical domain "0−x1:a1−y1:b1#0:1 ¾ 9[ Evaluation of this integral has been
discussed at great length by Vorovich et al[ "0865#\ so without going into details\ we give the _nal
results below]

Wij � g
x

9

d8 g
x

9 0x¦
K cos 8 cos u

L0:1

M cos 8

L 1
i

0y¦
K sin 8 cos u

L0:1
−

M sin 8

L 1
j du

L0:1
\ "B1#

where the following notations are introduced]

L"8# �
cos1 8

a1
¦

sin1 8

b1
\ M"8# �

x cos 8

a1
¦

y sin 8

b1
\ N � 0−

x1

a1
−

y1

b1
[ "B2#

Integrating with respect to u and changing the variable 8 � 8?¦p:1\ after some algebraic manipu!
lations\ we reduce equation to the _nal form]
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Wij � s
i

r�9

s
j

s�9

Cr
iC

s
j B 0

r¦s¦0
1

\
0
11"0−e1#

r−s¦1j¦0
1 s

"r¦s#:1

q�9

Cq
"r¦s#:1"−0# "r−s#:1a1q¦0

× s
i¦j−1q

p−9

Cp
i¦j−1qx

i¦j−1q−pypSi−q¦
j−p¦s−r

1
\
j¦p−s¦r

1
\ "B3#

where r¦s and j¦p are even\ Ck
n � n;:"k;"n−k#;#\ B"x\ y# is the Beta function\ and

Sm\n � g
p

9

cos1m 8 sin1n 8

"0−e1 sin1 8#m¦n¦"0:1#
d8[ "B4#

Integrals Sm\n for [m\ n − 9 can be expressed in terms of the complete elliptical integrals of the _rst
and second kinds by means of the recurrence relations derived by Mayrho}er and Fischer "0883#[

Appendix C

Consider the integral equation

gg
V

p"x9\ y9#
R

dx9 dy9 � pf"x\ y#\ "C0#

where R � ð"x−x9#1¦"y−y9#1Ł0:1 and V is an elliptical region[ Galin|s theorem states that if the
function f"x\ y# can be represented as

f"x\ y# � s
p

m�9

s
q

n�9

amnx
myn\ "C1#

then the solution of the integral equation has the following form

p"x\ y# � 00−
x1

a1
−

y1

b11
−0:1

s
p

m�9

s
q

n�9

bmnx
myn\ "C2#

where a and b are the major and minor semi!axes of the ellipse[ We now proceed to show that
although the integral eqns "07# are not in the form of "C0#\ nonetheless the same results hold for
them too[ Indeed\ consider the following integral equation

gg
V

p"x9\ y9#

R2
"x−x9#1 dx9 dy9 � pf"x\ y#[ "C3#

Equation "C3# can be written as

−x
1

1x gg
V

p"x9\ y9#
R

dx9 dy9¦
1

1x gg
V

x9p"x9\ y9#
R

dx9 dy9 � pf"x\ y#[ "C4#
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Now\ it is obvious that the results "C1# and "C2# do also hold for eqn "C3#[ In a similar fashion\
it can be shown the same results also hold for the integral equations

gg
V

p"x9\ y9#

R2
"y−y9#1 dx9 dy9 � pf"x\ y#\ "C5#

gg
V

p"x9\ y9#

R2
"x−x9#"y−y9# dx9 dy9 � pf"x\ y#\ "C6#

thus proving that results of the type "C1# and "C2# hold also for the integral eqns "07#[

Appendix D

In deriving eqns "20# and "27#\ use has been made of the integral

gg
V

x1my1n 00−
x1

a1
−

y1

b11
−0:1

dx dy � 1pa1m¦0b1n¦0 "1m−0#;;"1n−0#;;
"1m¦1n¦0#;;

\ "D0#

where it is assumed that "−0#;; � 0[ Derivation of the integral "D0# can be found in many books
on contact mechanics\ e[g[ Galin "0865#\ Gladwell "0879#[
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